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1. Background on decadal variability and impacts
2. Decadal predictability — sources and assessment
3. Current GFDL efforts at prediction

4. High resolution coupled modeling for predictions and projections
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"If you 're 29, there has been no global warming for your entire adult life. If you’re graduating
high school, there has been no global warming since you entered first grade. There has been
no global warming this century. None.”

Mark Steyn, National Review online, July 4, 2009,as quoted by syndicated columnist George Will
on July 23, 2009 in the Washington Post
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Simulated Atlantic Sea Surface Temperature
(based on GFDL CM2.1)
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North Atlantic Temperature
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*Significant climate influences
- regional to hemispheric

Other examples include:

*Can phase with longer term warming to cause
abrupt change

* Multidecadal Arctic variability
* US drought
* African drought

*Some predictability possible

*Crucial need to attribute observed changes



Over the next few decades internal variability is a
dominant source of uncertainty in climate projections
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Uncertainties arising from differences in model response to forcing other key
source of uncertainty for coming decades (whole century for TS’s)

Analysis after Hawkins and Sutton (2009, BAMS) Villarini and Vecchi (2011)



Key questions:

What are the relative roles of radiative forcing and natural climate variability
in these variations?

Are these variations potentially predictable?
How can we realize any potential predictability?

Would such predictions be “useful”?

To address these questions we require:

Improved understanding of decadal variability and its predictability

Development of the capability to make decadal-scale (2-20 years) projections and
predictions of climate variability and change on both global and regional scales.

==> Includes state of the art models, as well as advanced assimilation and observing
systems



Approaches:

1. Use theory, observations (instrumental and paleo) to improve understanding of
decadal variability and its mechanisms
Examples include:

*Collaboration between GFDL, NCAR and MIT on
decadal variability across a hierarchy of models

*Collaboration between GFDL, PMEL, Univ
Washington, Univ Miami on aspects of simulated and
observed Atlantic

Statistical estimate of predictability
Msadek et al., 2010
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Comparing Two Cases in CM2.1:
Hurricane Index Has Some Predictability When MOC Does

Idealized Predictions of MOC

Msadek, Dixon, Delworth and Hurlin (2010) “Unpredictable MOC” Case
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At GFDL, long history of research on prediction systems for seasonal to interannual
time scales (ENSO).

Requires:

- adequate, sustained observing system

- assimilation system to initialize models

- models to make predictions

- conduct large sets of hindcasts to evaluate skill

GFDL research has contributed to NCEP seasonal forecast systems, and is now contributing
to a developing national Multi-Model Ensemble (MME).

Preliminary results on
forecast skill from MME

ACC of NINO3.4 Index (Jan IC)
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Courtesy of Tony Rosati —




Key goal: assess whether climate projections for the next several decades can be

enhanced when the models are initialized from observed state of the climate system.

Strategy: Conduct suites of climate hindcasts/predictions starting from observed state, and compare to similar
simulations starting from arbitrary initial conditions.

A. Generate Initial Conditions - use ECDA (Zhang et al, 2007, 2010) for initial conditions from
“observed state”; produce ocean reanalysis 1961-2011

Uses: Atmosphere (NCEP reanalysis2, T,u,v,ps)
Ocean (xbt,mbt,ctd,sst,ssh,ARGO)

Radiative forcing (greenhouse gases, aerosols, solar, volcanoes); observed to 2005, RCP4.5
projections from 2006 onward

B. Conduct ensembles of simulations with radiative forcing and initialized from observations, starting
in January each year from from 1961 — 2011 (5000+ simulated years)

C. Conduct parallel simulations with radiative forcing but no initialization

Use the following models:

CM2.1 (primary model for decadal prediction studies)
CM2.5 (new high-resolution coupled model, described later)
CM3 (depending on resources and assessment of preliminary results)

= Contributing results to CMIP5/IPCC AR5 database

Geophysical Fluid Dynamics Laboratory
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* Robust predictions will require sound theoretical understanding
of decadal-scale climate processes and phenomena, and a high-
quality sustained observing system

» Assessment of predictability and its climatic relevance may have
significant model dependence, and thus may evolve over time
(with implications for observing and initialization systems).

But ... even if decadal fluctuations have limited predictability, it is
still important to better understand them to aid in the
interpretation of observed climate change.



High-resolution modeling: motivation

. Certain phenomena of interest (e.g.,
tropical cyclones, regional precipitation) are tied to small spatial
scale processes.

. Model fidelity influences decadal
variability and predictability: models with much higher
resolution may have more realistic simulations of decadal
variability.

* A hypothesis is that as more processes (such as oceanic eddies)
are explicitly resolved, the model’s physics becomes more
robust.



“Downscaling” of Climate Model Projections
Using High-Resolution Models
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Response of TC frequency in single 50km global atmospheric model
forced by four climate projections for 21st century
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Regional increase/decrease much larger than global-mean.
Pattern depends on details of ocean temperature change.

Sensitivity of response seen in many studies
e.g., Emanuel et al 2008, Knutson et al 2008, etc



High-Res AGCMs Basis for Experimental Hurricane Forecast Systems

Forecasts from June
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Strongest cyclones projected with double downscaling
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Large-scale TS Frequency Intensity



Overall frequency decrease, but strongest storms may become more frequent

Projected Changes in Atlantic Hurricane Frequency over 21st Century

bars indicate best estimate, dots indicate alternative estimates.
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High Resolution Coupled Model Development

Scientific Goals:

*Developing improved models (higher resolution, improved physics and
numerics, reduced bias) for studies of variability and predictability on intra-
seasonal to decadal time scales

*Explore impact of atmosphere and ocean on climate variability and
change using a high resolution coupled model

*New global coupled models: CM2.4, CM2.5, CM2.6, ...

CM2.1 100 Km 250 Km GFDL Running é_
CM2.3 100 Km 100 Km GFDL Running
CM2.4 10-25 Km 100 Km GFDL Running

CM2.5 10-25 Km 50 Km GFDL/GAEA  Running é—

CM2.6 4-10 Km 50 Km GAEA Running




CM2.0,CM2.1 — state of the art physical IPCC AR4

Circa 2005 climate models (1° ocn; 2° atm) Models
Circa 2010
HIRAM
ESM2M,ESM2G

 High spatial resolution (at
* Time-slice experiments
* Climate extremes

« Carbon cycle
egetation feedback
» Ocean formulation

IPCC AR5

Models
CM2.5

 High spatial resolution (coulpled)
* Energetic ocean

» Variability and change in
coupled system at high
resolution

CM3 (Primary Physical Model)
* Aerosols, indirect effect

» Stratosphere

» Convection, Land Model

* Atmospheric Chemistry

CM4 ?? - drawing on what is learned
from these various streams






Surface currents much more energetic

Delworth et al (2011)



However, to Reproduce Observed EKE Need Higher Resolution Yet
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Some Aspects of Tropical Climate Improve with Resolution

Annual Tropical Precipitation on 2.5x2.5 Grid

Observational Estimates (1979-2010) Model 100-year averages
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Interannual standard deviation of SST

(a) Obs (ERSST.v3 1949—-2008)
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Detrended DJF 200 hPa height anomaly
regressed onto detrended DJF NINO3 SSTA

(a) NCEP/NCAR Reanalysis (1961 —-—2001)
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Figure 17 DJF 200-hPa geopotential height anomalies regressed onto DJF NINO3 SSTAs, computed using (a) the NCEP/NCAR
Reanalysis (Kistler et al. 2001) for 1961-2001; (b) the CM2.1 1990 control run for years 11-290; (c) the CM2.5 1990 control run for
years 11-0270. The zero contour is omitted. Green shading in all panels indicates the positions of the observed extrema over the
North Pacific and Canada. Prior to computing the seasonal anomalies and regressions, all time series were detrended by removing
a 20-yr running mean.



Global Surface Temperature Response to 2xCO;
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South Asian Monsoon Response to 2xCO:

Response model dependent, hi-res model shows orographically-tied
features

June-September Precipitation - 60 year averaged response to 2xC0O2
CM2.1 (Lo-Res) CM2.5 (Hi-Res)
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ANNUAL MEAN RAINFALL RESPONSE TO DOUBLED CO2:

The response in Mediterranean precipitation appears different in the high-
resolution model ... is that difference in regional climate response “random” or a

consequence of the higher resolution?

Annual-mean Precipitation Response to 2xCO, (mm/day)




Plans for high resolution coupled model CM2.5

* Preliminary decadal prediction experiments
* Extended control simulation and idealized climate change

* Ensemble of 19t-215t century simulations (1860-2100)

* Coupled reanalysis with CM2.5 (large resource requirement)

* Extensive set of hindcasts with CM2.5 to evaluate seasonal to decadal predictive skill

In addition ... exploratory simulations with even higher resolution (CM2.6 and beyond) to study
critical processes in the climate system (ocean eddies, small-scale air-sea coupling and
feedbacks, etc.)

Geophysical Fluid Dynamics Laboratory




Summary

1. Decadal and multidecadal variability is an integral part of the climate record, with significant
societal relevance — especially for hydrology, and for regional scales.

2. Ocean processes (such as the Atlantic Meridional Overturning Circulation) may be crucial for
decadal variability.

3. An important goal is to gain a better understanding of the mechanisms of decadal variability,
thereby improving our ability to understand the observed climate record.

4. Can we predict decadal scale fluctuations? Probably to some degree. However, estimates of
decadal predictability are model dependent and may evolve over time.

5. A sustained observing system is critical to any potential predictive skill.

6. Decadal-scale variability and predictability, in concert with regional climate change, provides part
of the motivation for moving to much higher-resolution global coupled models.

7. We are moving to a new class of models with substantially higher resolution, more energetic ocean
circulation, and substantially improved tropical climate. These will be used extensively, in concert
with other models, for seasonal to decadal to centennial scale predictions and projections.

Geophysical Fluid Dynamics Laboratory









